Adaptive Management in Action: The South San Francisco Bay Salt Pond Restoration Project.

Laura Valoppi, USGS, Western Ecological Research Center Lead Scientist, South SF Bay Salt Pond Restoration Project

M. Dettling

San Francisco Bay

 Restoring the wildlife habitat

 Recreation access for 4+ million people

 Flood Protection for Silicon Valley

Past (~1850)

Present (~2000)

Initial Restoration Actions

2006 - 07

proposed 2008

South Bay Salt Pond Restoration Project

Acquisition in 2003: A Public/Private Partnership

- 16,500 total acres
 15,100 in South Bay
 1,400 along Napa River
- \$100 million cost

- \$72M from State of California
- \$8M from United States Government
- \$20M from Packard, Goldman, Hewlett, and Moore
 Foundations

Why restore tidal marsh?

- 90% of historic SFB tidal marshes have been lost to development
- Many tidal marsh species are now threatened or endangered
- Conversion of salt ponds to marsh is critical for the recovery of these species

Some Tidal Marsh Species: *Ridgway's Rail* Salt Marsh Harvest Mouse Song Sparrows California Black Rail

Why manage ponds?

- Key habitats for dense migratory bird populations in migration and winter
- Pacific Flyway Migration and Wintering Area for water birds
- Western Hemispheric Shorebird
 Reserve Network
- These species don't use mature vegetated tidal marsh

South Bay Salt Pond Restoration Proposed Alternatives

Managed Pond Emphasis

Tidal Marsh Emphasis

Managed Pond versus Salt Marsh

What is an Adaptive Management

Beginning of a large restoration experiment...

- Adaptive management will only be possible with targeted science support to track changes
- Strong science and applied research will be critical for success of the restoration
- Science support provided by USGS, academic, non-profit and consultants

Key Uncertainties

- Will there be enough sediment to fill ponds?
- How will restoration affect mudflat habitat?
- How will restoration affect birds, fish?
- How will nuisance species affect restoration?
- Will legacy mercury be a problem?
- How will trail use affect wildlife?
- How to manage pond water quality?
- How will climate change and SLR affect restoration?

Sediment

Subsided areas require sediment for marsh to develop

- Sediment supply coming into South Bay
- Sediment accumulation in breached ponds
- Restoration impacts on scour and mudflats
- Restoration impacts on remobilization of mercury

Sediment Supply - Study Locations

Shellenbarger, Wright and Schoellhamer

Sediment Supply tidal versus freshwater inflows

Positive values are seaward

Shellenbarger, Wright and Schoellhamer

Sediment Accumulation in Breached Ponds

Island Ponds / A21 Breached in March 2006

Duck's Head Pond/A6 Breached in December 2010

Callway

How are the ponds restored to marsh?

Wetland Sediment Dynamics at the Island Ponds

Ponds breached in Spring 2006

April 2008

Ball

•Ponds accumulate sediment at a rapid rate: > 20 cm in 2-3 years in some areas

•Plant recruitment is occurring at higher elevations within Pond A21

The "Ducks Head" Pond A6 sediment accumulation studies

Average deposition across all ten locations was 42.8 cm over 23 months.

Average rate of 22.2 cm/year

Sediment Accumulation in Breached Ponds

Duck's Head Pond A6

July 2015, 56 months

August 2011, 8 months

How will restoration affect mudflat habitat?

- ~ 2000 acres of mudflat habitat
- Traditional satellite imagery problematic
- Pilot Study using World View 2 or 3 with Coastal Blue Band

BRIAN FULFROST

& ASSOCIATES

Ground-truth

san francisco bay BIRD OBSERVATORY Thomson

Byrd, De La Cruz, Foxgrover, Valoppi

How can we enhance habitat for birds? > 40 species of birds

Pelican Media

Initial Restoration Actions

2006 - 07

proposed 2008

South Bay Salt Pond Restoration Project

Bird Island Experiment – SF2

- Enhance pond reconfiguration with nesting islands, controlled tidal flow
- Opened September 2010

Bird Nesting on Islands

2011
193 nests
28 of 30 islands used
80% of nests on islands
6% of nests on levees
14% of nests in cell 3 panne

Results from SF2 nesting study

• <u>2012</u>

- 68 nests
- 2 of 30 islands used
- 6% of nests on islands
- 0% of nests on levees
- 94% of nests in cell 3 panne

 2011- 160 Avocet nests, 64% nest success

 2012 – 4 Avocet nests, 0% nest success

Island Recipe for Nesting birds

Ackerman

- < 1 km from bay</p>
- 100 200 m from levee
- Linear, 0.05-0.10 ha in size

0.5-1.5 m above the water surface

Fewer islands per pond (3-5)

Initial Restoration Actions South Bay Salt Pond Restoration Project

2006 - 07

proposed 2008

Social Attraction

What is it?

Singles Bar for Birds

Why are we doing it?

 To attract nesting birds to specific areas

Social Attraction

Bird Island Pond,SF2

- 3 islands for CATE + calls
- 1 island for plovers + calls
- 1 island for FOTE

Bird Island Pond, A16

- 2 islands for CATE + calls
- 1 island for plovers + calls

Social Attraction

What are the results? (Preliminary data for Caspian Tern, CATE)

- SF2 islands: 147 nests, ~120 tern chicks fledged;
- A16 islands: 73 nests, ~54 tern chicks fledged;
- Total 220-247 breeding terns, 174 chicks;
 Breeding success is 0.79 chicks fledged/breeding pair

Trachtenbarg

US Army Corps of Engineers。

Island Effect for Wintering Birds

Isolated islands at high tide were used most

Use of shallow mounds by shorebirds

Photos by Pelican Media

Initial Restoration Actions

2006 - 07

proposed 2008

South Bay Salt Pond Restoration Project

Pond E12/E13 Redesign for Wintering Birds

- High, Medium, Low salinity
- Mimic the terrain favored by the shorebirds
 - A series of shallow channels snake through the ponds
 - Alongside low sausage-shaped dirt mounds for roosting and foraging
- Creates varying levels of water depth and salinity to optimize bird use – habitat diversity

Salinity Experiment – Ponds E12/E13

How will the presence of nuisance species affect waterbirds?

Ken Phenicie

Initial Restoration Actions South Bay Salt Pond Restoration Project

2006 - 07

proposed 2008

California Gull – nuisance species

December 6, 2010 Pond A6 "Ducks Head" Tidal Marsh (360 acres)

Gull studies

- In 2010, 569 gull chicks were banded, and resightings done in 2011
- The majority of gulls moved to the pond levees on the other side of Alviso Slough
- Overall CA gull populations decreased 17% from 2010 to 2011, then increased 28% from 2011 – 2012 (52,704 birds).
 2013, 2014 ~ 53,000 birds

0 1 2 4 6 8 Kilometers

Bluso-Demers, Robinson-Nilsen

What was the impact on nesting birds?

Forster's Tern chick fledging success
 4% in 2010

40% in 2011

So having fewer gulls and gulls further away from tern nesting colonies benefited tern nest success, even if CAGU populations remain elevated

South Bay Wintering Bird Abundance

Takekawa, De La Cruz

Initial Restoration Actions South Bay Salt Pond Restoration Project

2006 - 07

proposed 2008

Snowy Plover Habitat Enhancement

Preliminary Results of Plover Habitat Enhancement

	100.0%				
	00 00/	New Shell	Old Shell	Non Shell	
	Hatched	57.8%	71.4%	60.0%	ndoned redated ;hed
	Depredated	31.3%	21.4%	40.0%	
	Abandoned	9.4%	7.1%	0.0%	
	Unknown	1.6%	0.0%	0.0%	
	Ν	64	14	20	_
		(54)	(98)		

Breeding Season

Fate Rate

Tokatlian

How will legacy mercury affect wildlife?

- How much mercury will be mobilized due to the scour of Alviso Slough as a result of the tidal restoration at Ponds A5, A6, A7, and A8?
 - Where will the mobilized mercury move to?
 - What effect will the increased tidal action in these Ponds and surrounding sloughs have on mercury methylation and bioaccumulation processes?

Slotton

Ackerman, Marvin-DiPasquale, Jaffe, Shellenbarger

Initial Restoration Actions

2006 - 07

proposed 2008

South Bay Salt Pond Restoration Project

Mercury Accumulation and Remobilization

Mercury

Opened 1 out of 8 gates (5'/40') June 1, 2011

Ponds A8, A5, A7: Muted Tidal (1400 acres)

What is the Hg doing?

In the ponds ? Hg birds and pond fish

 In water? Hg water samples collocated with fish

Forster's tern

- In Alviso Slough ? Hg in slough fish
- In Alviso Slough ? Hg remobilization from sediment scour

stickleback

mudsucker

silverside

How will trails affect Wildlife?

- Breeding behavior
- Nest success
- Foraging
- Roosting
- What is safe distance from trail to habitat?

Results of Trail Studies

- For Western Snowy Plover nesting birds disturbed by walkers on avg 164 m away, 146 m tangentially
- Waterfowl (wintering/migr) safe buffer from trail = 120 m
- Shorebirds (wintering/migr) safe buffer from trail = 50 m

How will restoration affect water quality and fish?

40 species of fish - 90% native

Longfin Smelt – CA threatened species

Climate change and SLR - Why bother to restore?

- What effect with CC and SLR have on biology and habitats of SF Bay?
- What effect will SLR have on salt pond restoration?
- How should the restoration adaptively manage?

Takekawa, Jaffe

Management Response – Adaptation Strategies

- Restore wetlands early rather than latter
- Use of upland fill to increase elevation
- Use of dredge material for pond enhancements is being evaluated
- Creating high tide refugia marshmounds

Interdisciplinary Science in Action

www.southbayrestoration.org